Utilizing the Tempcap abutment with CAD/CAM

Abstract

The E4D in-office CAD/CAM unit has been employed in an investigative laboratory study to design and mill an unconventional IPS e.max restoration that would be coupled with the Tempcap as a final implant-supported crown. The combination of the Tempcap, in-office CAD/CAM procedures and e.max allows the clinician to create an immediate final restorative product with ideal characteristics.

Introduction

The temporization of a dental implant following surgery, particularly in the anterior region, is a necessary procedure. The temporization allows for surgical healing, preservation of the gingival architecture and, most important, replacement of a tooth in the edentulous space for patient acceptance. Several techniques for the temporization exist, but the process has proved to be time-consuming and frustrating. The Tempcap abutment and the process for temporization were created to provide a simple yet effective approach.1 With the advent of CAD/CAM technology and e.max, the potential of the Tempcap to act as a final abutment seemed likely and suitable for investigation.
mize healing and osseointegration of the implant body to bone:

• Minimal forces, if any, should be exerted on the implant body, permitting proper healing and preventing a non-osseous union.²

• The gingival architecture must be managed meticulously to prevent contamination, minimizing the risk of peri-implantitis and possible failure.³

• There must be sufficient time for the process of osseointegration.⁴

• Temporization and immediate restorations should not violate these factors.⁵

The Tempcap (Research Driven, Ontario, Canada) is a healing cap and restorative platform combined (Fig. 1). It has an all-metal construction, and it contains two to three retentive pin projections (Fig. 2). Tempcap is available in different widths and heights to accommodate different implant sizes (Fig. 3) and is compatible with existing instrumentation (Figs. 4).

The function of the Tempcap is:

• to allow for optimal gingival healing
• prevent contamination of the surgical field
• minimize forces and micro-vibrations on the implant
• facilitate the simple yet successful restoration of the implant (Fig. 5).

CAD/CAM stands for computer-aided design and computer-aided manufacturing. CAD enables the individual to digitally capture an image of a prepared tooth or structure and then design an indirect (out of the mouth) restoration by using software.⁶

After the ideal restoration has been produced, the design is then fabricated out of a material by a milling machine. In-office E4D units (D4D Technologies) are currently available to allow for immediate chairside fabrication without the use of a commercial laboratory.

IPS e.max (Ivoclar Vivadent) is a relatively new metal-free dental material used in indirect restorations. It is an esthetic material composed of lithium disilicate and has ideal physical and esthetic properties, allowing it to be the first choice for CAD/CAM restorations. IPS e.max has strength second only to gold and has the ability of detailed CAM production.⁷

Methodology

The Tempcap was selected and placed on an Ankylos (DENTSPLY) implant body (master cast with soft tissue) (Fig. 6). Digitization was achieved by using an E4D camera (Fig. 7), in which several images were captured to compile an accurate image (Figs. 8 and 9). CAD design was used with E4D software to determine and delineate margins (Fig. 10).
Tooth design was initiated incorporating several parameters:

- ideal esthetics and emergence profile (Fig. 11)
- adequate proximal contacts
- appropriate occlusal scheme
- material thickness requirements
- internal surface morphology to adapt to Tempcap
- design that can be milled via CAM technology

Numerous design iterations were required to achieve the desired design requirements (Figs. 12-14). IPS e.max was selected for milling (Fig. 15) and was executed by an E4D CAM unit (Fig. 16). Milling limitations, such as bur contact and prosthesis fracture, required CAD design modifications. Reiterations in CAD/CAM design were carried out until a successful restoration was achieved (Fig. 17).

The unfired IPS e.max crown was tried for fit and esthetics and then subsequently fired (Fig. 18), resulting in its color change. The crown was further stained, glazed and fired (Fig. 19), resulting in a highly esthetic final restoration (Fig. 20). The restoration's internal aspect (Fig. 21) was assessed.
implants

Discussion

This study has determined that the Tempcap can be successfully and accurately digitized and milled by in-office CAD/CAM technology (D4D Technologies) to create an ideal prosthetic crown from IPS e.max within a laboratory setting. CAD software can be manipulated to generate forms beyond the scope of the unit.

Complex units, such as the three-pronged Tempcap may be successfully designed and milled. IPS e.max has the capability to be milled in

Fig. 13. Lingual view of restoration.
Fig. 14. Facial view of restoration.
Fig. 15. IPS e.max CAD/CAD block.
Fig. 16. D4D E4D CAM unit.
Fig. 17. Milled IPS e.max restoration.
Fig. 18. Ivoclar furnace.
plex patterns, while still maintaining its structural integrity.

However, further laboratory studies, quantitatively assessing stresses and strengths and utilizing a larger sample size, are required to validate the concept. Subsequent clinical investigations are required to assess the clinical significance and viability of the Tempcap with CAD/CAM technology. The potential to fabricate the Tempcap entirely from e.max should also be considered.

Conclusions

In-office CAD/CAM technology can be utilized and manipulated to generate digitized forms beyond the scope of the morphogenesis. CAM manufacturing has limiting factors that must be realized when producing modified prostheses. CAD modifications must account for these discrepancies. IPS e.max has the ability to be milled in extremely detailed designs.
The Tempcap can be optically scanned and digitized in order to design and create a CAD/CAM IPS e.max restoration using E4D technology. The utilization of the Tempcap as a successful provisional abutment has been documented; the utility of the abutment as a simple, efficient and cost-effective component seems promising. These advances simplify the procedure and reduce the cost, ultimately allowing a greater accessibility for both patients and clinicians.

Editorial disclaimer: Dr. Les Kalman is the co-owner of Research Driven and the inventor of the Tempcap.

References

Les Kalman, DDS, graduated from the University of Western Ontario with a doctor of dental surgery degree in 1999. He then completed a GPR at the London Health Sciences Centre. He has been involved in general dentistry within private practice since 2000. He has served as the chief of dentistry at the Strathroy-Middlesex General hospital. In 2011, he transitioned to full-time academics as an assistant professor at the Schulich School of Medicine and Dentistry. Kalman is also the coordinator of the Dental Outreach Community Services (DOCS) program, which provides free dentistry within the community.

Kalman has authored articles ranging from pediatric impression to immediate implant surgery in both Canadian and American journals. He has been a product evaluator for several companies, including GC America and Clinician’s Choice. Kalman is the co-owner of Research Driven Incorporated, a company that deals with intellectual property development. His most recent dental product invention has been featured on the W Network’s “Backyard Inventors” television series.

Kalman is a member of the American Society for Forensic Odontology, International Team for Implantology, Academy of Osseointegration, American Academy of Implant Dentistry and the International Congress of Oral Implantology, where he has been recognized with master distinction. He can be contacted at (519) 661-2111, ext. 86097, lkalman@uwo.ca or through www.researchdriven.ca.